Artificial Intelligence 1 – Introduction

Arthur Bit-Monnot

INSA 4IR

Section 1

What is AI?

What is AI?

• Al is a field that aims at *building* intelligent entities.

What is intelligence?

Acting humanly: The Turing Test

Alan Turing (1950): "Can machines think?"

A human interrogator interacts with a human and a machine, writing questions and receiving written answers.

If the interrogator cannot distinguish between the two, the machine is intelligent.

Acting humanly: The Turing Test

Alan Turing (1950): "Can machines think?"

A human interrogator interacts with a human and a machine, writing questions and receiving written answers.

If the interrogator cannot distinguish between the two, the machine is intelligent.

Needed capabilities:

- Natural language processing: understanding and generating text.
- Knowledge representation: storing and using information.
- Automated reasoning: answering questions.
- Machine learning: adapting to new circumstances.

Acting humanly: The Turing Test

 \rightarrow ethnocentric: we consider ourselves as the most intelligent beings, therefore an intelligent machine should be able to mimic us.

Application to aeronautics:

- the peregrine falcon is the best flyer (diving speed of 390km/h!!!)
- the *peregrine test*:

A machine is capable of flying if it can fly so perfectly that it is indistinguishable from a peregrine falcon.

Acting rationally: The rational agent

- An **agent** is an entity that **perceives** its environment and **acts** upon it.
- An agent is rational if it acts so as to achieve the best (expected) outcome

Acting rationally: The rational agent

- An agent is an entity that perceives its environment and acts upon it.
- An agent is rational if it acts so as to achieve the best (expected) outcome

- Rationality is independent of:
 - the thought process
 - human behavior

Al focus: study and constructions of agents that do the right thing.

A Go Rational Playing Agent

- perceives the current state of the board
- select the move that maximizes the probability of winning

A Go Rational Playing Agent

- perceives the current state of the board
- select the move that maximizes the probability of winning

Often, finding the *best* move is impossible due to computational limits.

Limited rationality: find a good move in a reasonable time and under computational limits.

Rational Agent Model

- s: the current state of the environment (a situation)
- $\mathcal{A}(s)$: the set of actions available in state s
- utility(s, a): the expected utility of taking action a in state s

$$act(s) = \underset{a \in \mathcal{A}(s)}{\operatorname{arg\,max}} utility(s, a)$$

- Given: objective function (utility)
- Al: implement argmax: search for the best action

Objective Functions and Beneficial Machines

The objective function is **the** key to the behavior of the agent.

- Chess/Go: win the game
- Self-driving car: ???
 - progress towards destination
 - ensure safety
 - minimize fuel consumption

...

Objective Functions and Beneficial Machines

The objective function is **the** key to the behavior of the agent.

- Chess/Go: win the game
- Self-driving car: ???
 - progress towards destination
 - ensure safety
 - minimize fuel consumption
 - • •

How should we balance these objectives to align it with our own objective?
 value alignment problem (now and in the future)

Misbehaving Intelligent Agents

I replace my chess-solving software by a fully capable robot (so that I don't have to move the pieces myself).

What could go wrong?

Misbehaving Intelligent Agents

I replace my chess-solving software by a fully capable robot (so that I don't have to move the pieces myself).

What could go wrong?

- With the sole objective of winning:
 - the robot could cheat (e.g., by moving the pieces when I'm not looking)
 - the robot could blackmail its opponent
 - the robot could drug its opponent

Not "unintelligent" behavior, but *misaligned* with our (implicit) objectives.

Section 2

AI: Current State, Risks and Opportunities

"Intelligent Systems": State of the Art

- **Automated translation**: support for 100+ languages with close to human performance in most represented languages.
- **Game playing**: Outperforming humans in chess, Go, poker, etc.
- Legged locomotion: quadruped robots can walk, run, jump, and even do backflips.
- Planning and Scheduling: Optimal scheduling of tasks in complex environments over long horizons.
- **Image understanding**: Recognizing objects, people, actions, scenes in images and videos.

General and Super Artificial Intelligence

Currently, many domains where *specialized* AI systems outperform humans.

- **General AI**: AI that can perform any intellectual task that a human can do.
- Artificial Superintelligence: Al that vastly surpasses human intelligence in every field.

No consensus on the feasibility and time frame of these developments.

- high (existential!) risks
- high opportunities: solving complex problems, improving human life

Value alignment problem: how to ensure that a superintelligent Al's objectives are aligned with ours? $^{\rm 1}$

¹Nick Bostrom, Superintelligence: Paths, Dangers, Strategies, 2014

In the very short term

Fundamentally, the field of AI is about building intelligent agents, that may do tasks that were previously only doable by humans.

 \Rightarrow Replaces requirement on man-power (which requires money and persuasion!) by the much more affordable machine-power.

In the very short term

Fundamentally, the field of AI is about building intelligent agents, that may do tasks that were previously only doable by humans.

 \Rightarrow Replaces requirement on man-power (which requires money and persuasion!) by the much more affordable machine-power.

Opportunities:

• **Productivity**: many complex tasks do not require costly human intervention

Risks:

- **Lethal autonomous weapons**: requiring no human supervision makes them very scalable
- Surveillance: tracking individuals, predicting behavior
- **Persuasion**: individual targeted propaganda, etc.

AI and Society

Additional challenges:

- accountablity: who is responsible for the actions of an AI?
- transparency: how to understand the decisions of an AI?
- fairness: how to ensure that the AI does not discriminate?

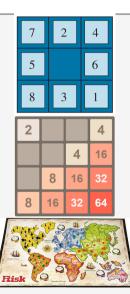
Other opportunities:

- Finding much better solutions to complex problems (e.g., railway optimization)
- Cracking open problems that were previously intractable (e.g., protein folding)

Section 3

Structure of the course

Objectives and Content


- Define AI and its scope
- Understand the basic concepts of AI
- Structure of intelligent agents
- Classification of AI problems/environments
- Sequential decision making: search, planning, (reinforcement learning)

Related courses

- Reasoning and Knowledge Representation: logic (4IR), Ontologies (4IR)
- Optimization: linear optimization (3MIC), metaheuristics (4IR)
- Problem solving: Constraint Programming / SAT (5SDBD)
- Machine learning: supervised (4IR), unsupervised (5A)

Labs: Sequential decision making

- Puzzles: Single player, deterministic (1 lab)
 8-puzzle (fr: taquin) → best-first search
- Single Player Games (non-deterministic) (1 lab)
 2048 → expectimax, Monte-Carlo Tree Search (MCTS)
- Multi-Player games (2 labs)
 - Risk-like (Monte Carlo Tree Search, reinforcement learning?)

Labs: practical details

- All labs will be done in **Rust**why?
 - performance (runtime & startup)
 - reliability

Labs: practical details

- All labs will be done in **Rust**why?
 - performance (runtime & startup)
 - reliability

Rust has a steep learning curve:

- will only require the fundamentals
- will provide a lot of help and examples

But you should get familiar with the language ahead of the labs

- Website: Labs/Rust
- reference: The Rust Programming Language (online book)


Evaluation

- 1 written exam (~50%)
- project-based evaluation (~50%)
 - based on the last 2 labs
 - precise modalities to be determined
 - most likely: concise report + oral

Reference: AIMA

Artificial Intelligence: A Modern Approach (AIMA), Stuart Russell and Peter Norvig Fourth Edition, 2020

Course will mostly follow the book structure.Most figures are from the book.

