
Artificial Intelligence 3 – Solving problems by Searching

Artificial Intelligence
3 – Solving problems by Searching

Arthur Bit-Monnot

INSA 4IR

Arthur Bit-Monnot | INSA 4IR 1 / 30

Artificial Intelligence 3 – Solving problems by Searching

Missionaries and Cannibals1

Three missionaries and three cannibals are on one side of a river
they have a boat that can hold one or two people.
their goal is to get everyone to the other side
but if the cannibals ever outnumber the missionaries on either side of the river, the
missionaries will be eaten.

1Amarel, Saul (1968). Michie, Donald (ed.). "On representations of problems of reasoning about actions".
Machine Intelligence.
Arthur Bit-Monnot | INSA 4IR 2 / 30

Artificial Intelligence 3 – Solving problems by Searching | Search Problem

Section 1

Search Problem

Arthur Bit-Monnot | INSA 4IR 3 / 30

Artificial Intelligence 3 – Solving problems by Searching | Search Problem

Search Problem

Focus: single agent, fully observable, deterministic, static, discrete

Components:

state space: set of all possible states the environment can be in
initial state: the state in which the agent starts
goal states: one or several state that we want to reach
actions: the set of actions that the agent can take in a given state
transition model: a description of what each action does
action cost: the cost of each action

Arthur Bit-Monnot | INSA 4IR 4 / 30

Artificial Intelligence 3 – Solving problems by Searching | Search Problem

Search Problem as a Graph

Graph:

each state is a node
each action is an edge:

source: state in which the action is taken
target: state after the action is taken (given by transition model)
label: action name (and cost)

Search problem:

find a path (~sequence of actions)
from the initial state
to one of the goal states

Arthur Bit-Monnot | INSA 4IR 5 / 30

Artificial Intelligence 3 – Solving problems by Searching | Search Problem

Search Problem: Vaccum world

Arthur Bit-Monnot | INSA 4IR 6 / 30

Artificial Intelligence 3 – Solving problems by Searching | Search Problem

Search Problem: Missionaries and Cannibals (source)

Arthur Bit-Monnot | INSA 4IR 7 / 30

https://www.aiai.ed.ac.uk/~gwickler/missionaries.html

Artificial Intelligence 3 – Solving problems by Searching | Search Problem

Easy: just Dijsktra the crap out of it!

Complexity: O(N × log(N) + E)

N: number of nodes
E: number of edges

POLYNOMIAL TIME!

Graph sizes:

Vacuum world: 8 nodes, 8*3 edges
Missionaries and Cannibals: 16 nodes, 34 edges

Arthur Bit-Monnot | INSA 4IR 8 / 30

Artificial Intelligence 3 – Solving problems by Searching | Search Problem

Search Problem: 8-puzzle

state space: all possible configurations of the puzzle
initial state: a configuration of the puzzle (e.g. on top left)
goal state: configuration on bottom left
actions: move a tile to the empty space
action cost: 1

How many possible states are there?

8-puzzle: 9! = 362,880
16-puzzle: 16! = 20,922,789,888,000

Arthur Bit-Monnot | INSA 4IR 9 / 30

Artificial Intelligence 3 – Solving problems by Searching | Search Problem

Search Problem: 8-puzzle

state space: all possible configurations of the puzzle
initial state: a configuration of the puzzle (e.g. on top left)
goal state: configuration on bottom left
actions: move a tile to the empty space
action cost: 1

How many possible states are there?

8-puzzle: 9! = 362,880
16-puzzle: 16! = 20,922,789,888,000

Arthur Bit-Monnot | INSA 4IR 9 / 30

Artificial Intelligence 3 – Solving problems by Searching | Search Problem

Best-First Search visualization

Unseen

Expanded

Frontier

3 best cost to node

→ last action on best path

0

01

1

1

1

1

2

2

223

3

1

2

2

Arthur Bit-Monnot | INSA 4IR 10 / 30

Artificial Intelligence 3 – Solving problems by Searching | Search Problem

Best-First Search visualization

Unseen

Expanded

Frontier

3 best cost to node

→ last action on best path

00

1

1

1

1

1

2

2

223

3

1

2

2

Arthur Bit-Monnot | INSA 4IR 10 / 30

Artificial Intelligence 3 – Solving problems by Searching | Search Problem

Best-First Search visualization

Unseen

Expanded

Frontier

3 best cost to node

→ last action on best path

001

1

1

1

1

2

2

223

3

1

2

2

Arthur Bit-Monnot | INSA 4IR 10 / 30

Artificial Intelligence 3 – Solving problems by Searching | Search Problem

Best-First Search visualization

Unseen

Expanded

Frontier

3 best cost to node

→ last action on best path

001

1

1

1

1

2

2

223

3

1

2

2

Arthur Bit-Monnot | INSA 4IR 10 / 30

Artificial Intelligence 3 – Solving problems by Searching | Search Problem

Best-First Search visualization

Unseen

Expanded

Frontier

3 best cost to node

→ last action on best path

001

1

1

1

1

2

2

223

3

1

2

2

Arthur Bit-Monnot | INSA 4IR 10 / 30

Artificial Intelligence 3 – Solving problems by Searching | Search Problem

Best-First Search visualization

Unseen

Expanded

Frontier

3 best cost to node

→ last action on best path

001

1

1

1

1

2

2

223

3

1

2

2

Arthur Bit-Monnot | INSA 4IR 10 / 30

Artificial Intelligence 3 – Solving problems by Searching | Search Problem

Best-First Search visualization

Unseen

Expanded

Frontier

3 best cost to node

→ last action on best path

001

1

1

1

1

2

2

223

3

1

2

2

Arthur Bit-Monnot | INSA 4IR 10 / 30

Artificial Intelligence 3 – Solving problems by Searching | Search Problem

Best-First Search visualization

Unseen

Expanded

Frontier

3 best cost to node

→ last action on best path

001

1

1

1

1

2

2

223

3

1

2

2

Arthur Bit-Monnot | INSA 4IR 10 / 30

Artificial Intelligence 3 – Solving problems by Searching | Search Problem

Best-First Search visualization

Unseen

Expanded

Frontier

3 best cost to node

→ last action on best path

001

1

1

1

1

2

2

223

3

1

2

2

Arthur Bit-Monnot | INSA 4IR 10 / 30

Artificial Intelligence 3 – Solving problems by Searching | Search Problem

Best-First Search visualization

Unseen

Expanded

Frontier

3 best cost to node

→ last action on best path

001

1

1

1

1

2

2

2

23

3

1

2

2

Arthur Bit-Monnot | INSA 4IR 10 / 30

Artificial Intelligence 3 – Solving problems by Searching | Search Problem

Best-First Search visualization

Unseen

Expanded

Frontier

3 best cost to node

→ last action on best path

001

1

1

1

1

2

2

22

3

3

1

2

2

Arthur Bit-Monnot | INSA 4IR 10 / 30

Artificial Intelligence 3 – Solving problems by Searching | Search Problem

Best-First Search visualization

Unseen

Expanded

Frontier

3 best cost to node

→ last action on best path

001

1

1

1

1

2

2

223

3

1

2

2

Arthur Bit-Monnot | INSA 4IR 10 / 30

Artificial Intelligence 3 – Solving problems by Searching | Search Problem

Best-First Search visualization

Unseen

Expanded

Frontier

3 best cost to node

→ last action on best path

001

1

1

1

1

2

2

223

3

1

2

2

Arthur Bit-Monnot | INSA 4IR 10 / 30

Artificial Intelligence 3 – Solving problems by Searching | Search Problem

Best-First Search visualization

Unseen

Expanded

Frontier

3 best cost to node

→ last action on best path

001

1

1

1

1

2

2

223

3

1

2

2

Arthur Bit-Monnot | INSA 4IR 10 / 30

Artificial Intelligence 3 – Solving problems by Searching | Search Problem

Best-First Search visualization

Unseen

Expanded

Frontier

3 best cost to node

→ last action on best path

001

1

1

1

1

2

2

223

3

1

2

2

Arthur Bit-Monnot | INSA 4IR 10 / 30

Artificial Intelligence 3 – Solving problems by Searching | Search Problem

Best-First Search visualization

Unseen

Expanded

Frontier

3 best cost to node

→ last action on best path

001

1

1

1

1

2

2

223

3

1

2

2

Arthur Bit-Monnot | INSA 4IR 10 / 30

Artificial Intelligence 3 – Solving problems by Searching | Search Problem

Best-First Search: algorithm
function Best-First-Search(sinit, f)

Frontier ← {(sinit, f(sinit)} // Priority queue, ordered by increasing f(s)
Expanded ← ∅ // Nodes already expanded
PathCost[sinit] ← 0
while Frontier is not empty do

s← node in Frontier with lowest f(s)
if s ∈ Expanded then continue // Already Expanded
if IsGoal(s) then return path from sinit to s (reconstructed from Predecessor)
for a ∈ Actions(s) do // Actions applicable in s

s′ ← Result(s, a) // Doing action a in s results in s′

c← PathCost[s] + cost(s, a, s′)
if s′ /∈ PathCost or c < PathCost[s′] then // New path or better path to s′

PathCost[s’] ← c // Record best cost to s′

Predecessor[s’] ← (s, a) // Record how we got to s′

Frontier ← Frontier ∪ {(s′, f(s′))} // Add s′ to the queue
Expanded ← Expanded ∪ {s} // Mark s as expanded

return failure (no path found)
Arthur Bit-Monnot | INSA 4IR 11 / 30

Artificial Intelligence 3 – Solving problems by Searching | Search Problem

Graph search without the Graph

We don’t need to store the graph

Implicitly defined by the transition model:

Action(s): returns the set of actions applicable in state s (outgoing edges)
Result(s, a): returns the state resulting from doing action a in state s (target node)

Arthur Bit-Monnot | INSA 4IR 12 / 30

Artificial Intelligence 3 – Solving problems by Searching | Search Problem

The Best in Best-First Search

Which node of the frontier is to be selected next?
i.e. what is the definition of f(s)?

Some you already know:

Breadth first search:2
f(s) = depth(s)
≈ FIFO frontier

Depth first search:
f(s) = −depth(s)
≈ LIFO frontier

Dijkstra:
f(s) = PathCost(s)

2depth: number of *actions* from initial state
Arthur Bit-Monnot | INSA 4IR 13 / 30

Artificial Intelligence 3 – Solving problems by Searching | Search Problem

The Best in Best-First Search

Which node of the frontier is to be selected next?
i.e. what is the definition of f(s)?

Some you already know:

Breadth first search:2
f(s) = depth(s)
≈ FIFO frontier

Depth first search:
f(s) = −depth(s)
≈ LIFO frontier

Dijkstra:
f(s) = PathCost(s)

2depth: number of *actions* from initial state
Arthur Bit-Monnot | INSA 4IR 13 / 30

Artificial Intelligence 3 – Solving problems by Searching | Search Problem

The Best in Best-First Search

Which node of the frontier is to be selected next?
i.e. what is the definition of f(s)?

Some you already know:

Breadth first search:2
f(s) = depth(s)
≈ FIFO frontier

Depth first search:
f(s) = −depth(s)
≈ LIFO frontier

Dijkstra:
f(s) = PathCost(s)

2depth: number of *actions* from initial state
Arthur Bit-Monnot | INSA 4IR 13 / 30

Artificial Intelligence 3 – Solving problems by Searching | Search Problem

The Best in Best-First Search

Which node of the frontier is to be selected next?
i.e. what is the definition of f(s)?

Some you already know:

Breadth first search:2
f(s) = depth(s)
≈ FIFO frontier

Depth first search:
f(s) = −depth(s)
≈ LIFO frontier

Dijkstra:
f(s) = PathCost(s)

2depth: number of *actions* from initial state
Arthur Bit-Monnot | INSA 4IR 13 / 30

Artificial Intelligence 3 – Solving problems by Searching | Search Problem

Dijkstra’s algorithm

assumption: the action cost is strictly positive (c(a) > 0)

Lets say we expand a state s and generate a new state s′ with action a:

PathCost[s′] = PathCost[s] + c(a)
> PathCost[s]

when expanding a state with cost C,
all future states will have a cost of at least C
all previous states (expanded states) have a cost of at most C

Corollary:

Dijkstra’s algorithm is cost-optimal
when it expands a (goal) state, it has found the optimal path to it

Arthur Bit-Monnot | INSA 4IR 14 / 30

Artificial Intelligence 3 – Solving problems by Searching | Search Problem

Dijkstra’s algorithm

assumption: the action cost is strictly positive (c(a) > 0)

Lets say we expand a state s and generate a new state s′ with action a:

PathCost[s′] = PathCost[s] + c(a)
> PathCost[s]

when expanding a state with cost C,
all future states will have a cost of at least C
all previous states (expanded states) have a cost of at most C

Corollary:

Dijkstra’s algorithm is cost-optimal
when it expands a (goal) state, it has found the optimal path to it

Arthur Bit-Monnot | INSA 4IR 14 / 30

Artificial Intelligence 3 – Solving problems by Searching | Search Problem

Dijkstra’s algorithm: complexity

O(N × log(N) + E)
N: number of expanded nodes
E: number of edgees followed

How many nodes do we extract from the frontier?

N = |{s | PathCost(s) ≤ C∗}|
C∗: cost of the optimal path to the goal

E = O(N × b)
b: branching factor (number of actions per state)

Arthur Bit-Monnot | INSA 4IR 15 / 30

Artificial Intelligence 3 – Solving problems by Searching | Search Problem

Dijkstra’s algorithm: scaling with solution cost

Arthur Bit-Monnot | INSA 4IR 16 / 30

Artificial Intelligence 3 – Solving problems by Searching | Search Problem

Informed Best-First Search

Dijkstra: no information about the goal

g(s) = cost(sinit → s): cost of the optimal path from the sinit to s

h(s) = ˆcost(s→ sgoal): estimated cost of the optimal path from s to sgoal

f(s) = g(s) + h(s)

priority of s: estimated cost of the optimal path through s

Arthur Bit-Monnot | INSA 4IR 17 / 30

Artificial Intelligence 3 – Solving problems by Searching | Search Problem

Informed Best-First-Search

Key idea:

I am in Toulouse and want to go to Bordeaux
I have established that I need 1h to go to Albi

g(Albi) = cost(Toulouse, Albi) = 1h

I know that I need at least 2h to go from Albi to Bordeaux
h(Albi) = 2h ≤ cost(Albi, Bordeaux)

Hence I need at least 3h to go from Toulouse to Bordeaux through Albi
f(Albi) = 3h

I should only consider paths that go through Albi once I have no other options for less
than 3 hours

Arthur Bit-Monnot | INSA 4IR 18 / 30

Artificial Intelligence 3 – Solving problems by Searching | Search Problem

A* algorithm

A*: Best-First Search with f(s) = g(s) + h(s)

when h(s) always underestimates the true cost to the goal
said to be admissible

h(s) ≤ cost(s→ sgoal)

A* (with admissible heuristic)
it is guaranteed to find the optimal path
when it expands the goal state, it has found the optimal path to it

Arthur Bit-Monnot | INSA 4IR 19 / 30

Artificial Intelligence 3 – Solving problems by Searching | Search Problem

A* algorithm: Optimality

A* is optimal when h(s) is admissible

Proof (sketch):

A* expands the nodes in increasing order of f(s)
when a state s is expanded, any state s′ with f(s’) < f(s) has already been expanded
for the goal state sgoal

f(sgoal) = g(sgoal) = C∗

if a state s′ is not expanded when reaching the goal
f(s′) ≥ f(sgoal) = C∗

admissibility: cost(sinit → s′ → sgoal) ≥ f(s′)
cost(sinit → s′ → sgoal) ≥ C∗

a path going through s′ is suboptimal

Arthur Bit-Monnot | INSA 4IR 20 / 30

Artificial Intelligence 3 – Solving problems by Searching | Search Problem

Admissible heuristic: Routing

Path planning:

What is an admissible heuristic for finding the shortest path (traveled distance) between two
cities?

hSLD(s): straight line distance between s and sgoal

What is an admissible heuristic for finding the fastest path (traveled time) between two cities?

hT T (s) = hSLD(s)
vmax

vmax: maximum speed limit on the road network (130km/h)

Arthur Bit-Monnot | INSA 4IR 21 / 30

Artificial Intelligence 3 – Solving problems by Searching | Search Problem

Admissible heuristic: Routing

Path planning:

What is an admissible heuristic for finding the shortest path (traveled distance) between two
cities?

hSLD(s): straight line distance between s and sgoal

What is an admissible heuristic for finding the fastest path (traveled time) between two cities?

hT T (s) = hSLD(s)
vmax

vmax: maximum speed limit on the road network (130km/h)

Arthur Bit-Monnot | INSA 4IR 21 / 30

Artificial Intelligence 3 – Solving problems by Searching | Search Problem

Admissible heuristic: Routing

Path planning:

What is an admissible heuristic for finding the shortest path (traveled distance) between two
cities?

hSLD(s): straight line distance between s and sgoal

What is an admissible heuristic for finding the fastest path (traveled time) between two cities?

hT T (s) = hSLD(s)
vmax

vmax: maximum speed limit on the road network (130km/h)

Arthur Bit-Monnot | INSA 4IR 21 / 30

Artificial Intelligence 3 – Solving problems by Searching | Search Problem

Admissible heuristic: Routing

Path planning:

What is an admissible heuristic for finding the shortest path (traveled distance) between two
cities?

hSLD(s): straight line distance between s and sgoal

What is an admissible heuristic for finding the fastest path (traveled time) between two cities?

hT T (s) = hSLD(s)
vmax

vmax: maximum speed limit on the road network (130km/h)

Arthur Bit-Monnot | INSA 4IR 21 / 30

Artificial Intelligence 3 – Solving problems by Searching | Search Problem

What makes for a good heuristic

Extreme cases:

h(s) = 0: Uninformed search (Dijkstra’s algorithm)
h(s) = cost(s, sgoal): Perfect heuristic, but as hard to compute as the solution itself

search would only stay on optimal paths

Trade-off:

something that is reasonably fast to compute (~polynomial time)
something that is as close as possible to the optimal cost

you expand ALL states with f(s) < C∗

but never overestimates the cost to the goal
otherwise you lose optimality

⇒ Define a relaxed version of the problem by removing some constraint

Arthur Bit-Monnot | INSA 4IR 22 / 30

Artificial Intelligence 3 – Solving problems by Searching | Search Problem

Admissible heuristics: 8-puzzle
s1

sgoal

Observation: each action only moves one piece
Observation: each misplaced piece must be moved at least once

h1(s): number of misplaced tilesa (hamming distance)
each misplaced tile requires an action
h1(s1) = 8

Observation: tile 7 must be moved at least 3 times (2 vertically and 1
horizontally)

h2(s): sum of Manhattan distances
sum of the distances of each tile to its goal position
h2(s1) = 3 + 1 + 2 + 2 + 3 + 3 + 2 = 18

Relaxation: assume pieces can be moved independently
aThe "blank" is NOT a tile!

Arthur Bit-Monnot | INSA 4IR 23 / 30

Artificial Intelligence 3 – Solving problems by Searching | Search Problem

Admissible heuristics: 8-puzzle
s1

sgoal

Observation: each action only moves one piece
Observation: each misplaced piece must be moved at least once

h1(s): number of misplaced tilesa (hamming distance)
each misplaced tile requires an action
h1(s1) = 8

Observation: tile 7 must be moved at least 3 times (2 vertically and 1
horizontally)

h2(s): sum of Manhattan distances
sum of the distances of each tile to its goal position
h2(s1) = 3 + 1 + 2 + 2 + 3 + 3 + 2 = 18

Relaxation: assume pieces can be moved independently
aThe "blank" is NOT a tile!

Arthur Bit-Monnot | INSA 4IR 23 / 30

Artificial Intelligence 3 – Solving problems by Searching | Search Problem

Admissible heuristics: 8-puzzle
s1

sgoal

Observation: each action only moves one piece
Observation: each misplaced piece must be moved at least once

h1(s): number of misplaced tilesa (hamming distance)
each misplaced tile requires an action
h1(s1) = 8

Observation: tile 7 must be moved at least 3 times (2 vertically and 1
horizontally)

h2(s): sum of Manhattan distances
sum of the distances of each tile to its goal position
h2(s1) = 3 + 1 + 2 + 2 + 3 + 3 + 2 = 18

Relaxation: assume pieces can be moved independently
aThe "blank" is NOT a tile!

Arthur Bit-Monnot | INSA 4IR 23 / 30

Artificial Intelligence 3 – Solving problems by Searching | Search Problem

Admissible heuristics: 8-puzzle
s1

sgoal

Observation: each action only moves one piece
Observation: each misplaced piece must be moved at least once

h1(s): number of misplaced tilesa (hamming distance)
each misplaced tile requires an action
h1(s1) = 8

Observation: tile 7 must be moved at least 3 times (2 vertically and 1
horizontally)

h2(s): sum of Manhattan distances
sum of the distances of each tile to its goal position
h2(s1) = 3 + 1 + 2 + 2 + 3 + 3 + 2 = 18

Relaxation: assume pieces can be moved independently
aThe "blank" is NOT a tile!

Arthur Bit-Monnot | INSA 4IR 23 / 30

Artificial Intelligence 3 – Solving problems by Searching | Search Problem

8-puzzle: A* expansions

Arthur Bit-Monnot | INSA 4IR 24 / 30

Artificial Intelligence 3 – Solving problems by Searching | Search Problem

A* algorithm: complexity and limitations

Even with h2, A* expands ~10% of the states in the most complex cases

it may be slow (time complexity: O(N × log(N) + E))
it will run out of memory on larger problems (space complexity: O(N))

For a given heuristic, there is no algorithm “faster” than A* while retaining optimality

but there are algorithms that are more memory efficient
e.g. iterative deepening A* (IDA*)

one could improve heuristic functions
more advanced relaxations (e.g. pattern databases for 15-puzzle)

resort to suboptimal search
e.g. Greedy Best-First Search
non-admissible heuristics:w

Arthur Bit-Monnot | INSA 4IR 25 / 30

Artificial Intelligence 3 – Solving problems by Searching | Search Problem

A* algorithm: complexity and limitations

Even with h2, A* expands ~10% of the states in the most complex cases

it may be slow (time complexity: O(N × log(N) + E))
it will run out of memory on larger problems (space complexity: O(N))

For a given heuristic, there is no algorithm “faster” than A* while retaining optimality

but there are algorithms that are more memory efficient
e.g. iterative deepening A* (IDA*)

one could improve heuristic functions
more advanced relaxations (e.g. pattern databases for 15-puzzle)

resort to suboptimal search
e.g. Greedy Best-First Search
non-admissible heuristics:w

Arthur Bit-Monnot | INSA 4IR 25 / 30

Artificial Intelligence 3 – Solving problems by Searching | Search Problem

A* algorithm: complexity and limitations

Even with h2, A* expands ~10% of the states in the most complex cases

it may be slow (time complexity: O(N × log(N) + E))
it will run out of memory on larger problems (space complexity: O(N))

For a given heuristic, there is no algorithm “faster” than A* while retaining optimality

but there are algorithms that are more memory efficient
e.g. iterative deepening A* (IDA*)

one could improve heuristic functions
more advanced relaxations (e.g. pattern databases for 15-puzzle)

resort to suboptimal search
e.g. Greedy Best-First Search
non-admissible heuristics:w

Arthur Bit-Monnot | INSA 4IR 25 / 30

Artificial Intelligence 3 – Solving problems by Searching | Search Problem

Suboptimal routing heuristics

On a road network we could measure the detour index:

detour index = distance on road
distance in straight line ≈ 1.3

What about using h(s) = 1.3× hSLD(s)?

more accurate on average (closer to true cost)
⇒ (much?) faster

but may be overestimate
⇒ suboptimal

Arthur Bit-Monnot | INSA 4IR 26 / 30

Artificial Intelligence 3 – Solving problems by Searching | Search Problem

Suboptimal routing heuristics

On a road network we could measure the detour index:

detour index = distance on road
distance in straight line ≈ 1.3

What about using h(s) = 1.3× hSLD(s)?

more accurate on average (closer to true cost)
⇒ (much?) faster

but may be overestimate
⇒ suboptimal

Arthur Bit-Monnot | INSA 4IR 26 / 30

Artificial Intelligence 3 – Solving problems by Searching | Search Problem

Weighted A*

f(s) = g(s) + W × h(s)

W > 1 is a weight factor that makes the goal more attractive (favors states with low h(s))

suboptimal: solution cost in [C∗, W × C∗]

Arthur Bit-Monnot | INSA 4IR 27 / 30

Artificial Intelligence 3 – Solving problems by Searching | Search Problem

Grid search: A* vs Weighted A* (W=2)

(a) A* search with manhattan distance heuristic (b) Weighted A* with W=2. Weighted A* expands 7
times fewer nodes but finds a suboptimal path, 5% more costly.
Arthur Bit-Monnot | INSA 4IR 28 / 30

Artificial Intelligence 3 – Solving problems by Searching | Search Problem

(Main) Best-First Search variants

f(s) = g(s) + W × h(s)

A* f(s) = g(s) + h(s) (W = 1)
Dikjstra f(s) = g(s) (W = 0)
Weighted A* f(s) = g(s) + W × h(s) (1 < W <∞)
Greedy Best-First Search f(s) = h(s) (W =∞)

Arthur Bit-Monnot | INSA 4IR 29 / 30

Artificial Intelligence 3 – Solving problems by Searching | Search Problem

Program

Next week: First Lab on 8-puzzle

Search algorithms (Dijkstra, (weighted) A*, Greedy Best-First Search)

Homework:

solve some 8-puzzles (Online game)
practice some Rust (Getting Started)

Next lectures:

making complex decisions under uncertainty
sequential, stochastic environments
MDP, stochastic games

Arthur Bit-Monnot | INSA 4IR 30 / 30

https://sliding.toys/mystic-square/8-puzzle/c5184932
https://arbimo.github.io/insa-4ir-artificial-intelligence/labs/rust.html

	Search Problem

