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Agent (course #2)

An agent is anything that can be
viewed as:

perceiving its environment
through sensors, and
acting upon that environment
through actuators

Rational agents select their actions in order to maximize a performance measure
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Environments (course #2)

environment is characterized along several dimensions
fully observable vs partially observable (partial characterization of current state)
deterministic vs stochastic (non-predictable state evolution)
episodic vs sequential (several non-independent actions required)
static vs dynamic (autonomous state evolution with time)
single-agent vs multi-agent (other agents qith non-independent objectives)
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Goal-based agent (course #3 / lab 1)
Environment: fully observable / deterministic / “sequential” / static / single-agent

Goals describe desirable situations (happy states)

The agent selects actions that lead to the goal

requires following a plan: sequence of actions leading from the current state to a goal
state

Producing a (high quality?) plan is a computationnally hard decision problem
best-first search: dijkstra, A*, greedy best-first search (course #3, lab1)
many other methods: greedy algorithms, mathematical programming, local-search
(metaheuristics course)

In such environment (evolving predictably only through the agent’s action) a plan is
guaranteed to work
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Utility & Decision Theory (course #4)

Environment: fully observable / stochastic / episodic / static / single-agent

probability theory describes what an agent believes
probability distribution on the current state
probability distribution on the state after taking one action

utility theory describes what an agent wants
decision theory combines the two to describe what an agent should do
an agent that shows consistent preferences possesses a utility function

numeric measure of “happiness” for each state
a rational agent can act by selecting the action that maximizes the expected utility
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Section 2

Markov Decision Processes
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Sequential Decision processes

Grid environment:
each cell is a state
agent can move up, down, left, right
each action has a small cost of 0.04
two terminal states, with respective
rewards of +1 and -1

Optimal plan (Shortest action sequence to
goal):

[Up, Up, Right, Right, Right]
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Sequential Decision processes, with stochastic actions

What if the actions are stochastic?
80% chance of going in the intended
direction
10% chance of going in each of
sideways directions
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Sequential Decision processes, with stochastic actions

Action sequence [Up, Up, Right, Right, Right]
has probability 0.85 = 0.32768 of working has
intended

Could it get us to the goal through another
(non-intended) path? With what probability?

yes, if the action results in the move sequence
[Right, Right, Up, Up, Right] with probability
0.14 × 0.8 = 0.00008
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Markov Decision Processes

States and actions:

S: set of states
Actions(s): set of actions available in state s

a state with no available actions is a terminal state

Transition model:

P (s′|s, a): probability of reaching state s′ after taking action a in state s
markovian: only depends on current state and action (and not on history)

Reward model:1

R(s, a, s′): reward received after taking action a in state s and reaching state s′

1 for reaching the goal, -1 for reaching the negative goal
−0.04 for each other transition (action cost, encouraging to reach the goal quickly)

1a negative reward can be interpreted as a cost
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2048 as an MDP

States: all possible board configurations
actions: subset of {up, down, left, right} (the ones that change the board)
Transition model:

first move all tiles in the direction of the action (merging identical tiles)
the uniformely select an empty time
place a 2 or 4 tile with respective probabilities 0.9 and 0.1

reward: the value of any newly merged tile
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Policies

A finite sequence of actions cannot solve the problem in the stochastic case.

A solution must be a policy π that specifies the action to take in any state it may reach.

π(s): action to take in state s
where s is determined from the last percept

An optimal policy π∗ is one that maximizes the expected utility of the agent.
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Optimal Policies (example)

Two optimal policies for the grid environment, stating
which actions to do in each state.

The two policies differ only in the action to in the (1, 3)
state:

Left: Longer path, but safer
Right: Shorter path, but riskier

Note: policies a computed for

a utility defined as the sum of rewards
a transition reward of -0.04 for each transition into a non-terminal state
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Optimal Policies (example with variable rewards)

Optimal policies when changing the
transition reward r (previously −0.04)

top-left: very high cost of transition,
agents desperately tries to exit
top-right: high cost, agent attempts
for the goal but is ok with the (−1)
state if goal to far
bottom-left: low cost, agent avoids
any risk
bottom-right: positive reward for any
action, agent avoid terminal state to
gather rewards indefinitely
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Utilities over time

What is the utility of an an history: Uh([s0, a0, s1, a1, s2, . . . , sn])?

Over this history we would collects the rewards:

R(s0, a0, s1)
R(s1, a1, s2)
. . .
R(sn−1, an−1, sn)

How do we aggregate them?
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Additive discounted rewards

Uh([s0, a0, s1, a1, s2, . . . , sn]) = R(s0, a0, s1)
+ γR(s1, a1, s2)
+ γ2R(s2, a2, s3)
+ . . .

+ γn−1R(sn−1, an−1, sn)

where γ is the discount factor (0 ≤ γ ≤ 1)
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Why add a discount factor?

empirical: humans and animals tend to prefer immediate rewards
economics: money now is worth more than money later (it would produce interests and
its value may decrease due to inflation)
uncertainty about the true rewards: our model is not perfect, and the more time passes
the most likely we are to be wrong
convenience: the sum of discounted rewards converges to a finite value, even with infinite
action sequences
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Section 3

Exercise: discount factor for interest rates
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Exercise: discount factor for interest rates

I am interested in maximizing the money I have in my bank account in the long term.

The interest rate is 5% per time-step:

What should be the discount factor γ to represent this situation?

If I have 100 euros in my account now, I will have 105 euros in one time-step.
I should value 105 euros in the next step as much as 100 euros now.

Let M be the amount of money I have now, and I the interest rate (e.g. 0.05).

M = γ × (M × (1 + I))
γ = 1

1+I = 1
1.05 ≈ 0.9524
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Optimal policies and the utilities of states
Given an initial state (1,1) and a policy π, I can determine my probability of being in any state
after n steps.

Step 0:
p((1, 1)) = 1

Step 1:

p((2, 1)) = 0.8
p((1, 2)) = 0.1
p((1, 1)) = 0.1

Step 2:
p((3, 1)) = 0.82

moving from (2,1)
p((2, 1)) = 0.8×0.1+0.8×0.1+0.1×0.8

not moving from (2,1) and moving
from (1,1)

. . .

Arthur Bit-Monnot | INSA 4IR 21 / 35



Artificial Intelligence 5 – Markov Decision Processes (MDP) | Exercise: discount factor for interest rates

Optimal policies and the utilities of states
Given an initial state (1,1) and a policy π, I can determine my probability of being in any state
after n steps.

Step 0:
p((1, 1)) = 1

Step 1:
p((2, 1)) = 0.8
p((1, 2)) = 0.1
p((1, 1)) = 0.1

Step 2:

p((3, 1)) = 0.82

moving from (2,1)
p((2, 1)) = 0.8×0.1+0.8×0.1+0.1×0.8

not moving from (2,1) and moving
from (1,1)

. . .

Arthur Bit-Monnot | INSA 4IR 21 / 35



Artificial Intelligence 5 – Markov Decision Processes (MDP) | Exercise: discount factor for interest rates

Optimal policies and the utilities of states
Given an initial state (1,1) and a policy π, I can determine my probability of being in any state
after n steps.

Step 0:
p((1, 1)) = 1

Step 1:
p((2, 1)) = 0.8
p((1, 2)) = 0.1
p((1, 1)) = 0.1

Step 2:
p((3, 1)) = 0.82

moving from (2,1)
p((2, 1)) = 0.8×0.1+0.8×0.1+0.1×0.8

not moving from (2,1) and moving
from (1,1)

. . .
Arthur Bit-Monnot | INSA 4IR 21 / 35



Artificial Intelligence 5 – Markov Decision Processes (MDP) | Exercise: discount factor for interest rates

Utilities of policy π in state s

The utility of a state s under a policy π is the expected utility of the history starting from s
and following π.

Uπ(s) = E

[ ∞∑
t=0

γtR(St, π(St), St+1)
]

where the expectation E is taken with respect to the probability distribution over all possible
histories starting from s and following π.
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Optimal Policy and Utility of States
Of all the possible policies the agent could choose to execute in s, one (or more) will have
higher expected utility than all the others.

π∗
s = arg max

π
Uπ(s)

Under the common assumptions2 the optimal policy is independent of the initial state.

from the markovian property, the optimal policy is a function of the current state only:
optimal policies have no reason to disagree on the action to take in a given state
noted as π∗ (optimal policy)

The utility of a state is the utility the agent would get by following the optimal policy from
that state.

U(s) = Uπ∗(s)
2discounted utilities and infinite horizon, (i.e. no fixed deadline for the agent)
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Characterizing Utility: Bellman Equation

The optimal policy is the one that maximizes the expected utility of the agent, computed from
immediate rewards and the utility of successor states.

π∗(s) = arg max
a∈Actions(s)

∑
s′

P (s′|s, a)
[
R(s, a, s′) + γU(s′)

]
The Bellman equation characterizes the utility of a state in terms of the utility of its
successor states (when the agent follows an optimal policy).

U(s) = max
a∈Actions(s)

∑
s′

P (s′|s, a)
[
R(s, a, s′) + γU(s′)

]
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Action Utility

The action utility function (or Q-function) Q(s, a) is the expected utility of doing action a in
state s and then following the optimal policy.

Q(s, a) =
∑
s′

P (s′|s, a)
[
R(s, a, s′) + γU(s′)

]
We can redefine the state utility and optimal policy in terms of the action utility:

U(s) = max
a∈Actions(s)

Q(s, a)

π∗(s) = arg max
a∈Actions(s)

Q(s, a)
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Utility: Solution to the Bellman Equation

The utilities of the states are the solution to
the Bellman equation.

(Approximated) Utility of states with γ = 1
and r = −0.04.
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Reward shaping (example)

Exercise: I want my pet to learn to do a sequence of 3 actions.

I can give it a reward of 3 sweets when it does the right sequence
I can give it a reward of 1 sweet for each action it does correctly

Are the two MDP equivalent?

No, the utilities would be different
But, the optimal policy would be the same
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Reward shaping theorem

Let Φ(s) be any function of the state.

The optimal policy is the same for the MDP with reward R(s, a, s′) and the MDP with reward

R′(s, a, s′) = R(s, a, s′) + γΦ(s′) − Φ(s)

The utilities are just a mean to an end: the optimal policy.

Reward shaping can be used to make the problem easier to solve, by making the optimal
policy easier to find.

critical in reinforcement learning (immediate rewards guide the learning process)
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Section 4

Algorithms for MDPs
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Algorithms for MDPs

offline algorithms: compute the optimal policy before the agent starts acting
generate the optimal policy for all states
value iteration, policy iteration, linear programming, . . .

online algorithms: approximate the optimal policy while the agent is acting
expectimax, Monte-Carlo Tree Search, Q-learning, . . .
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Solving MDPs offline

For each state s, we have the Bellman equation:

U(s) = max
a∈Actions(s)

∑
s′

P (s′|s, a)
[
R(s, a, s′) + γU(s′)

]
With n states, we have n equations with n unknowns (the utilities of the n states).
problem: the equations are

non-linear (max operator)
coupled: U(s) may appear in the equation for U(s′) and vice-versa
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Solving MDPs offline: Value Iteration
Value iteration is an iterative algorithm that approximates the utilities of the states.

start with an initial guess for the utilities (typicaly U(s) = 0∀s)
iteratively update the utilities of the states by incorporating the utilities of the successor
states

Let Ui(s) be the utility of state s at the i-th iteration.

U0(s) = 0

Ui+1(s) = max
a∈Actions(s)

∑
s′

P (s′|s, a)
[
R(s, a, s′) + γUi(s′)

]
(Bellmanupdate)

At step 1: U1(s) is the utility of the state if the agent could only do one action.
At step 2: U2(s) is the utility of the state if the agent could do two actions, etc.
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Solving MDPs offline: Value Iteration
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Solving MDPs offline: Value Iteration

Some properties of the value iteration
algorithm:

the error will decrease at each iteration
convergence: the utilities of the states
converge to the optimal utilities

under the assumption that γ < 1
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Conclusion

Markov Decision Processes (MDPs) are a formalism to model
sequential decision processes
with stochastic actions
and rewards

The optimal policy is the one that maximizes the expected utility of the agent
The Bellman equation characterizes the utility of a state in terms of the utility of its
successor states
Offline algorithms like value iteration

can be used to compute the optimal policy before the agent starts acting
can be hard to compute for large problems (requires the utility function for every state)

Online algorithms (next course)
approximate the optimal policy while the agent is acting (i.e. under computation constraints)
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