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Multiagent environments



One decision maker Multiagent environments

When there are:

• a number of actors
• but only one decision maker

Actors simply do what they are told (benevolent agent assumption)

• e.g. a fleet of robots in a factory

Properties:

• not “truly” multi-agent
• problems arise from distributed execution of actions by several actors

‣ concurrency, synchronization, …
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Multiple decision makers Multiagent environments

Several agents, where each:

• has preferences,
• chooses and executes its own plans
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Multiple decision makers Multiagent environments

Several agents, where each:

• has preferences,
• chooses and executes its own plans

Two main possibilities:
• agents have a common goal

‣ e.g. workers in a company
‣ challenge: coordination

• agents have personal preferences, pursued to the best of their
abilities
‣ e.g., players in games, car drivers, …
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Game theory Multiagent environments

Game theory: theory of strategic decision making

• strategic: a player takes into account what other players might do
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Game theory Multiagent environments

Game theory: theory of strategic decision making

• strategic: a player takes into account what other players might do
• not (only) for games!

‣ auctioning oil drilling rights
‣ product development and pricing
‣ national defense

Opposed to decision theory: theoretical foundation for single agent AI
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Game theory in AI Multiagent environments

1. Agent design
• exploit game theory to analyze possible decisions and compute

expected utility
• assumption: other agents act rationally (i.e. according to game

theory)

2. Mechanism design
• design the rules of the game
• so that the collective good of all agents is maximized
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Making collective
decisions



Example: Group assignment Making collective decisions

A cooperative game-theoretic situation:

• 65 students
• must be grouped into 5 subgroups
• each student with its own preferences regarding composition

Arthur Bit-Monnot Artificial Intelligence – CM7 7 / 32



Example: Group assignment Making collective decisions

A cooperative game-theoretic situation:

• 65 students
• must be grouped into 5 subgroups
• each student with its own preferences regarding composition

Rings a bell?
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Mechanism design (applied to group
assignment)

Making collective decisions

A mechanism consists of:

1. language for describing the allowed strategy
• formulation 0 to 3 vows
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Mechanism design (applied to group
assignment)

Making collective decisions

A mechanism consists of:

1. language for describing the allowed strategy
• formulation 0 to 3 vows

2. a distinguished agent that collects the strategy choice from the
agents in the game
• me and my google form
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Mechanism design (applied to group
assignment)

Making collective decisions

A mechanism consists of:

1. language for describing the allowed strategy
• formulation 0 to 3 vows

2. a distinguished agent that collects the strategy choice from the
agents in the game
• me and my google form

3. an outcome rule, known to all agents used to determine the
payoffs of each agent
• assignment maximizing the global utility (implementation detail:

using the CPSat solver)
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Utility in group assignment Making collective decisions

Key challenge in collective decisions: capturing the agents’ preferences

Here: approximated by a small number of vows
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Utility in group assignment Making collective decisions

Key challenge in collective decisions: capturing the agents’ preferences

Here: approximated by a small number of vows

• keeps complexity low
‣ easy to express for agents
‣ limit computational complexity of the combinatorial problem

• normalizes individual utility (in [0, 3])
‣ avoids utility monsters
‣ Bob expressing a utility of 1000 for being with Alice
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Example: Group assignment Making collective decisions

Assignment 1

Individual utility (# vows fulfilled)
• Alice: 3
• Bob: 2
• Chloe: 0

Assignment 2

Individual utility (# vows fulfilled)
• Alice: 1
• Bob: 2
• Chloe: 1
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Example: Group assignment Making collective decisions

Assignment 1

Individual utility (# vows fulfilled)
• Alice: 3
• Bob: 2
• Chloe: 0

Social welfare:
• utilitarian (sum): 5
• egalitarian (min): 0

Assignment 2

Individual utility (# vows fulfilled)
• Alice: 1
• Bob: 2
• Chloe: 1

Social welfare:
• utilitarian (sum): 4
• egalitarian (min): 1
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Social welfare Making collective decisions

Measure of social welfare by aggregating individual utility:

Must balance between:

• total utility (sum)
• spreading among agents (min, Gini index, …)
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Common mechanisms Making collective decisions

• Auctions (fr: enchères)
‣ bid value correlates with agent utility
‣ attribution to highest bid (proxy for best utility)

• Utility alignment
‣ incentivizes agent to play for common good

• Voting
‣ let agents express preferences
‣ algorithm to choose based on preferences
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Utility alignment (stock options ex.) Making collective decisions

Intel’s new CEO gets pay package valued at about $69 million¹

Fortune – 15 march 2025

• $1 million base salary
• $2 performance bonus (cash)
• rest in stock options and equity, based on performance

¹https://fortune.com/2025/03/15/intel-new-ceo-lip-bu-tan-pay-package-stock-
options-bonus-69-million/
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Utility alignment (stock options ex.) Making collective decisions

Intel’s new CEO gets pay package valued at about $69 million¹

Fortune – 15 march 2025

• $1 million base salary
• $2 performance bonus (cash)
• rest in stock options and equity, based on performance

⇨ The compensation (decided by shareholders) gives Mr Tan great
incentives to raise the stock’s value 🚀

¹https://fortune.com/2025/03/15/intel-new-ceo-lip-bu-tan-pay-package-stock-
options-bonus-69-million/
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Utility alignment Making collective decisions

Process of defining the environment so that the agent’s own utility
aligns with the one of designer’s.

E.g., incentives to work towards a company’s objectives:

• legal (work contract, breaking it would have undesirable
consequences)

• social (peer recognition, …)
• economical (bonuses, raise perspectives)
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Utility alignment in policy making Making collective decisions

Airplane
• price: 70 €
• eCO₂: 0.365 t

Train
• price: 110 €
• eCO₂: 0.002 t

¹Social Cost of Carbon: https://en.wikipedia.org/wiki/Social_cost_of_carbon
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Utility alignment in policy making Making collective decisions

Airplane
• price: 70 €
• eCO₂: 0.365 t

Train
• price: 110 €
• eCO₂: 0.002 t

Global cost of emitting 1t eCO₂ is estimated to 1000€ shared among all
earthling (8 billions)¹

• personal cost / t: 1000
8×109 = 1.3 × 10−7 €

¹Social Cost of Carbon: https://en.wikipedia.org/wiki/Social_cost_of_carbon
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Utility alignment in policy making Making collective decisions
Airplane

• price: 70 €
• eCO₂: 0.365 t

‣ self eCO₂ cost: ≈ 0€
‣ shared eCO₂ cost: 365 €

Train
• price: 110 €
• eCO₂: 0.002 t

‣ self eCO₂ cost: ≈ 0€
‣ shared eCO₂ cost: 2 €

Global cost of emitting 1t eCO₂ is estimated to 1000€ shared among all
earthling (8 billions)¹

• personal cost / t: 1000
8×109 = 1.3 × 10−7 €

• my personal interest is to take the airplane (regardless of others)
• yet, total utility increase by 323€ if I take the train

¹Social Cost of Carbon: https://en.wikipedia.org/wiki/Social_cost_of_carbon
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Utility alignment (tragedy of the
commons)

Making collective decisions

Tragedy of the commons

If nobody has to pay for a shared resource, it may be exploited in a
way that leads to a lower utility for all agents.

♣

Solution: charge agents for common resource usage (externalities)
• Align agent’s preferences to that maximizing his utility maximizes

common good

E.g. a carbon price of 200€ would increase the cost of the plane ticket by
73€
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Mechanism designs: Vote Making collective decisions

Did the designers of the fifth Republic
had a background in social choice¹?

¹https://en.wikipedia.org/wiki/Social_choice_theory
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Mechanism designs: Vote Making collective decisions

Did the designers of the fifth Republic
had a background in social choice¹?

No.
Two-round majority vote lacks almost all
desirable properties for a voting system.

¹https://en.wikipedia.org/wiki/Social_choice_theory
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Agent design



Decision whan facing other agents Agent design

Others agents may be considered as:

• an economy: when there are many agents whose impact can be
considered as aggregated
‣ e.g. increase in demand causes prices to rises

• part of the environment: when their strategies are independent of
our own strategy

• explicitly modeled: in adversarial environments
‣ adversarial game-tree search
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Two-players zero-sum game Agent design

Most studied games (chess, go, …) are:

• two players
• deterministic
• turn-taking
• perfect information (= fully observable)
• zero-sum

Zero-sum game

What is good for a player is equaly bad for the other. Any gain for
one is an equivalent for the other.

♣
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Utility in zero-sum games Agent design

• my own utility function SelfUtility(s) that I try to maximize.

• advsary’s utility function is AdvUtility(s) = - SelfUtility(s)
‣ equivalently, he should to minimize my own utility function.
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A tiny zero-sum game Agent design

Consider a turn-taking game where:

• I start
• I have three available actions {a, b, c}
• my adversary has two actions {l, r}
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Minimax game tree Agent design
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Minimax game tree Agent design
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Minimax game tree Agent design
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Minimax game tree Agent design
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Minimax game tree Agent design
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Minimax game tree Agent design
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Self's turn:

Self’s evaluation
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7 3

min
3

6

Arthur Bit-Monnot Artificial Intelligence – CM7 23 / 32



Minimax game tree Agent design
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Minimax game tree Agent design
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Minimax game tree Agent design
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Self’s evaluation
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Minimax game tree Agent design
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Minimax game tree Agent design
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Self’s evaluation
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Minimax game tree Agent design
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Minimax game tree Agent design
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Minimax equations Agent design

Minimax(𝑠) ≔

{
{
{
{
{
{
{SelfUtility(𝑠) if IsTerminal(𝑠)

max𝑎∈ SelfActions(𝑠) Minimax(Result(𝑠, 𝑎)) if ToMove(𝑠) = Self

min𝑎∈ AdvActions(𝑠) Minimax(Result(𝑠, 𝑎)) if ToMove(𝑠) = Adv
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Minimax properties Agent design

Complexity:

• Time: 𝑂(𝑏𝑑)
• Spatial: 𝑂(𝑑)

where 𝑑 is the maximum depth and 𝑏 is the branching factor.

Minimax Optimality

The Minimax algorithm is optimal if both player act rationnaly
♡
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Generalization beyond zero-sum games Agent design

Each agent has a utility function:

• agent A: 𝑈𝐴(𝑠)
• agent B: 𝑈𝐵(𝑠)
• …

Each state 𝑠 has a utility vector [𝑈𝐴(𝑠), 𝑈𝐵(𝑠)]
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Generalization beyond zero-sum games Agent design

Each agent has a utility function:

• agent A: 𝑈𝐴(𝑠)
• agent B: 𝑈𝐵(𝑠)
• …

Each state 𝑠 has a utility vector [𝑈𝐴(𝑠), 𝑈𝐵(𝑠)]

Optimal game-tree search:

• each agent maximizes its own component of the utility vector
• strict generalization of Minimax
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Optimal game-tree search Agent design
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Optimal game-tree search Agent design
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Optimal game-tree search Agent design
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B's turn:

A's turn:

Evaluation [𝑈𝐴, 𝑈𝐵]
(terminal / heuristic / rec call)
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Optimal game-tree search Agent design
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B's turn:

A's turn:

Evaluation [𝑈𝐴, 𝑈𝐵]
(terminal / heuristic / rec call)

[7, 3] [5, 4]
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Optimal game-tree search Agent design
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A's turn:

Evaluation [𝑈𝐴, 𝑈𝐵]
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Optimal game-tree search Agent design
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A's turn:

Evaluation [𝑈𝐴, 𝑈𝐵]
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[5, 4]
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Optimal game-tree search Agent design
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A's turn:

Evaluation [𝑈𝐴, 𝑈𝐵]
(terminal / heuristic / rec call)
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Optimal game-tree search Agent design
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Optimal game-tree search Agent design
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A's turn:

Evaluation [𝑈𝐴, 𝑈𝐵]
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[7, 3] [5, 4]

max B
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Optimal game-tree search Agent design
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Optimal game-tree search Agent design
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Optimal game-tree search Agent design
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Optimal game-tree search Agent design
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Minimax’s exponential complexity Agent design

Problem: complexity is exponential is the tree depth

Could we avoid useless computations?
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Alpha-Beta game tree Agent design
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Alpha-Beta game tree Agent design
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Alpha-Beta game tree Agent design
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Alpha-Beta game tree Agent design
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Alpha-Beta game tree Agent design
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Alpha-Beta game tree Agent design
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Alpha-Beta game tree Agent design
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Alpha-Beta game tree Agent design
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Alpha-Beta game tree Agent design
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Alpha-Beta game tree Agent design
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Alpha-Beta game tree Agent design
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Alpha-Beta game tree Agent design
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Alpha-Beta game tree Agent design
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Alpha-Beta game tree Agent design
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Alpha-beta pruning Agent design

Alpha-Beta pruning:

• maintains upper/lower bounds on utility
• ignores branches that cannot impact final result

‣ action 𝑟 after 𝑏 cannot help us
• remains optimal while evaluating fewer nodes
• is sensitive to order
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Minimax with cutoff Agent design

Even with Alpha-Beta pruning, one cannot expect full exploration of the
game tree¹

Solution:
• define a cutoff condition when to stop searching
• use a heuristic evaluation function to estimate utility

¹For american checkers, done but took 20 years on super computers. (Checkers is
solved. J. Schaeffer, 2007, 🔗)
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Minimax with cutoff Agent design

Minimax(𝑠) ≔

{
{{
{{
{
{{
{{
{SelfUtility(𝑠) if IsTerminal(𝑠)

Eval(𝑠) if IsCutoff(𝑠)

max𝑎∈ SelfActions(𝑠) Minimax(Result(𝑠, 𝑎)) if ToMove(𝑠) = Self

min𝑎∈ AdvActions(𝑠) Minimax(Result(𝑠, 𝑎)) if ToMove(𝑠) = Adv
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