Artificial Intelligence – CM7

Multi-agent systems – Adversarial games

Arthur Bit-Monnot

INSA Toulouse - 4IR

Multiagent environments

One decision maker

Multiagent environments

When there are:

- a number of **actors**
- but only one **decision maker**

Actors simply do what they are told (*benevolent agent assumption*)

• e.g. a fleet of robots in a factory

Properties:

- not "truly" multi-agent
- problems arise from distributed execution of actions by several actors
 - concurrency, synchronization, ...

Multiple decision makers

Multiagent environments

Several agents, where each:

- has preferences,
- chooses and executes its own plans

Multiple decision makers

Several agents, where each:

- has preferences,
- chooses and executes its own plans

Two main possibilities:

- agents have a **common goal**
 - e.g. workers in a company
 - challenge: coordination
- agents have personal preferences, pursued to the best of their abilities
 - ▶ e.g., players in games, car drivers, ...

Game theory

Multiagent environments

Game theory: theory of strategic decision making

• strategic: a *player* takes into account what other *players* might do

Game theory

Game theory: theory of strategic decision making

- strategic: a *player* takes into account what other *players* might do
- **not** (only) for games!
 - auctioning oil drilling rights
 - product development and pricing
 - national defense

Opposed to *decision theory*: theoretical foundation for single agent AI

Game theory in AI

1. Agent design

- exploit *game theory* to analyze possible decisions and compute expected utility
- assumption: other agents act rationally (i.e. according to game theory)

2. Mechanism design

- design the **rules** of the game
- so that the **collective good** of all agents is maximized

Making collective decisions

A cooperative game-theoretic situation:

- 65 students
- must be grouped into 5 subgroups
- each student with its own preferences regarding composition

A cooperative game-theoretic situation:

- 65 students
- must be grouped into 5 subgroups
- each student with its own preferences regarding composition

Rings a bell?

Mechanism design (applied to group Making collective decisions assignment)

A mechanism consists of:

- 1. language for describing the allowed strategy
 - formulation 0 to 3 vows

Mechanism design (applied to groupMaking collective decisionsassignment)

A mechanism consists of:

- 1. language for describing the allowed strategy
 - formulation 0 to 3 vows
- 2. a distinguished agent that collects the strategy choice from the agents in the game
 - me and my google form

Mechanism design (applied to group Making collective decisions **assignment**)

A mechanism consists of:

- 1. language for describing the allowed strategy
 - formulation 0 to 3 vows
- 2. a distinguished agent that collects the strategy choice from the agents in the game
 - me and my google form
- 3. an outcome rule, *known to all agents* used to determine the payoffs of each agent
 - assignment maximizing the *global utility* (implementation detail: using the CPSat solver)

Utility in group assignment

Making collective decisions

Key challenge in collective decisions: capturing the agents' preferences

Here: approximated by a small number of vows

Key challenge in collective decisions: capturing the agents' preferences

Here: approximated by a small number of vows

- keeps complexity low
 - easy to express for agents
 - limit computational complexity of the combinatorial problem
- normalizes individual utility (in [0, 3])
 - avoids utility monsters
 - Bob expressing a utility of 1000 for being with Alice

Example: Group assignment

Making collective decisions

Assignment 1

Individual utility (# vows fulfilled)

- Alice: 3
- Bob: 2
- Chloe: 0

Individual utility (# vows fulfilled)

Assignment 2

- Alice: 1
- Bob: 2
- Chloe: 1

Example: Group assignment

Making collective decisions

Assignment 1

Individual utility (# vows fulfilled)

- Alice: 3
- Bob: 2
- Chloe: 0

Social welfare:

- utilitarian (sum): 5
- egalitarian (min): 0

Individual utility (# vows fulfilled)

Assignment 2

- Alice: 1
- Bob: 2
- Chloe: 1

Social welfare:

- utilitarian (sum): 4
- egalitarian (min): 1

Measure of **social welfare** by aggregating individual utility: Must balance between:

- total utility (sum)
- spreading among agents (min, Gini index, ...)

Common mechanisms

- Auctions (fr: enchères)
 - bid value correlates with agent utility
 - attribution to highest bid (proxy for best utility)
- Utility alignment
 - incentivizes agent to play for common good
- Voting
 - let agents express preferences
 - algorithm to choose based on preferences

Utility alignment (stock options ex.) Making collective decisions

Intel's new CEO gets pay package valued at about \$69 million¹

Fortune – 15 march 2025

- \$1 million base salary
- \$2 performance bonus (cash)
- rest in stock options and equity, based on performance

¹https://fortune.com/2025/03/15/intel-new-ceo-lip-bu-tan-pay-package-stockoptions-bonus-69-million/

Utility alignment (stock options ex.) Making collective decisions

Intel's new CEO gets pay package valued at about \$69 million¹

Fortune – 15 march 2025

- \$1 million base salary
- \$2 performance bonus (cash)
- rest in stock options and equity, based on performance

 \Rightarrow The compensation (decided by shareholders) gives Mr Tan great incentives to raise the stock's value \mathscr{A}

¹https://fortune.com/2025/03/15/intel-new-ceo-lip-bu-tan-pay-package-stockoptions-bonus-69-million/ Process of defining the environment so that the agent's own utility **aligns with the one of designer's**.

E.g., incentives to work towards a company's objectives:

- legal (work contract, breaking it would have undesirable consequences)
- social (peer recognition, ...)
- economical (bonuses, raise perspectives)

Utility alignment in policy making

Making collective decisions

Airplane

- price: 70 €
- eCO₂: 0.365 t

Train

- price: 110 €
- eCO₂: 0.002 t

¹Social Cost of Carbon: https://en.wikipedia.org/wiki/Social_cost_of_carbon

Utility alignment in policy making

Making collective decisions

Airplane

Train

- price: 70 €
- eCO₂: 0.365 t

- price: 110 €
- eCO₂: 0.002 t

Global cost of emitting 1t eCO₂ is estimated to 1000€ shared among all earthling (8 billions)¹

• personal cost / t:
$$\frac{1000}{8 \times 10^9} = 1.3 \times 10^{-7} \in$$

¹Social Cost of Carbon: https://en.wikipedia.org/wiki/Social_cost_of_carbon

Utility alignment in policy making

Making collective decisions

Airplane

- price: 70 €
- eCO₂: 0.365 t
 - self eCO₂ cost: ≈ 0€
 - shared eCO₂ cost: 365 €

Train

- price: 110 €
- eCO₂: 0.002 t
 - self $eCO_2 \text{ cost:} \approx 0 \in$
 - ► shared eCO_2 cost: 2 €

Global cost of emitting 1t eCO₂ is estimated to 1000€ shared among all earthling (8 billions)¹

- personal cost / t: $\frac{1000}{8 \times 10^9} = 1.3 \times 10^{-7}$ €
- my personal interest is to take the airplane (regardless of others)
- yet, total utility increase by 323€ if I take the train

¹Social Cost of Carbon: https://en.wikipedia.org/wiki/Social_cost_of_carbon

Utility alignment (tragedy of the commons)

Making collective decisions

Tragedy of the commons

If nobody has to pay for a shared resource, it may be exploited in a way that leads to a lower utility for all agents.

Solution: charge agents for common resource usage (externalities)

• Align agent's preferences to that maximizing his utility maximizes common good

E.g. a carbon price of 200€ would increase the cost of the plane ticket by 73€

Mechanism designs: Vote

Making collective decisions

Did the designers of the fifth Republic had a background in social choice¹?

¹https://en.wikipedia.org/wiki/Social_choice_theory

Mechanism designs: Vote

Making collective decisions

Did the designers of the fifth Republic had a background in social choice¹?

No.

Two-round majority vote lacks almost all desirable properties for a voting system.

¹https://en.wikipedia.org/wiki/Social_choice_theory

Agent design

Decision whan facing other agents

Agent design

Others agents may be considered as:

- an **economy**: when there are many agents whose impact can be considered as aggregated
 - e.g. increase in demand causes prices to rises
- part of the **environment**: when their strategies are independent of our own strategy
- **explicitly modeled**: in adversarial environments
 - adversarial game-tree search

Two-players zero-sum game

Agent design

Most studied games (chess, go, ...) are:

- two players
- deterministic
- turn-taking
- perfect information (= fully observable)
- zero-sum

Zero-sum game

What is good for a player is equaly bad for the other. Any gain for one is an equivalent for the other.

÷

- my own utility function SelfUtility(s) that I try to maximize.
- advsary's utility function is AdvUtility(s) = SelfUtility(s)
 - equivalently, he should to **minimize** my own utility function.

Agent design

Consider a turn-taking game where:

- I start
- I have three available actions {a, b, c}
- my *adversary* has two actions {l, r}

MINIMAX game tree

Agent design

MINIMAX game tree

Agent design

(terminal / heuristic / rec call)

MINIMAX equations

Agent design

 $\operatorname{Minimax}(s) \coloneqq \begin{cases} \operatorname{SelfUtility}(s) & \text{if IsTerminal}(s) \\ \max_{a \in \operatorname{SelfActions}(s)} \operatorname{Minimax}(\operatorname{Result}(s, a)) & \text{if ToMove}(s) = \operatorname{Self} \\ \min_{a \in \operatorname{AdvActions}(s)} \operatorname{Minimax}(\operatorname{Result}(s, a)) & \text{if ToMove}(s) = \operatorname{Adv} \end{cases}$

MINIMAX properties

Agent design

Complexity:

- Time: $O(b^d)$
- Spatial: O(d)

where d is the maximum depth and b is the branching factor.

MINIMAX Optimality

The MINIMAX algorithm is optimal if both player act rationnaly

Generalization beyond zero-sum games

Agent design

Each agent has a utility function:

- agent A: $U_{A(s)}$
- agent B: $U_{B(s)}$
- ...

Each state *s* has a utility vector $[U_{A(s)}, U_{B(s)}]$

Generalization beyond zero-sum games

Agent design

Each agent has a utility function:

- agent A: $U_{A(s)}$
- agent B: $U_{B(s)}$

• ...

Each state s has a utility vector $[U_{A(s)}, U_{B(s)}]$

Optimal game-tree search:

- each agent maximizes its own component of the utility vector
- strict generalization of MINIMAX

MINIMAX's exponential complexity

Agent design

Problem: complexity is exponential is the tree depth

Could we avoid useless computations?

Agent design

(terminal / heuristic / rec call)

Agent design

Alpha-Beta pruning:

- maintains upper/lower bounds on utility
- **ignores branches** that cannot impact final result
 - \blacktriangleright action r after b cannot help us
- remains **optimal** while evaluating fewer nodes
- is sensitive to order

MINIMAX with cutoff

Agent design

Even with Alpha-Beta pruning, one cannot expect full exploration of the game tree¹

Solution:

- define a *cutoff* condition when to stop searching
- use a heuristic evaluation function to estimate utility

¹For american checkers, done but took 20 years on super computers. (Checkers is solved. J. Schaeffer, 2007, \bigotimes)

Agent design

 $\operatorname{Minimax}(s) \coloneqq \begin{cases} \operatorname{SelfUtility}(s) & \text{if IsTerminal}(s) \\ \operatorname{Eval}(s) & \text{if IsCutoff}(s) \\ \max_{a \in \operatorname{SelfActions}(s)} \operatorname{Minimax}(\operatorname{Result}(s, a)) & \text{if ToMove}(s) = \operatorname{Self} \\ \min_{a \in \operatorname{AdvActions}(s)} \operatorname{Minimax}(\operatorname{Result}(s, a)) & \text{if ToMove}(s) = \operatorname{Adv} \end{cases}$