
Artificial Intelligence – CM8
Monte-Carlo Tree Search

Arthur Bit-Monnot

INSA Toulouse – 4IR

Monte-Carlo Tree Search

Minimax Monte-Carlo Tree Search

Minimax:

• systematically explores a game-tree
• up to certain depth
• returns the evaluation that maximizes our estimated utility at this depth

‣ assuming the adversary minimizes this evaluation

Arthur Bit-Monnot Artificial Intelligence – CM8 2 / 46

Minimax limitations Monte-Carlo Tree Search

• complexity exponential in depth: 𝑂(𝑏𝑑)
‣ typical branching factors:

– checkers: 8
– chess 31
– go: 250

• symmetric: all branches explored up to the max depth
‣ no preference for promising states

• highly-dependent on the evaluation function

Arthur Bit-Monnot Artificial Intelligence – CM8 3 / 46

Minimax limitations Monte-Carlo Tree Search

• complexity exponential in depth: 𝑂(𝑏𝑑)
‣ typical branching factors:

– checkers: 8
– chess 31
– go: 250

• symmetric: all branches explored up to the max depth
‣ no preference for promising states

• highly-dependent on the evaluation function

⇨ Many mitigations (alpha-beta pruning, …) but hard to bypass

Arthur Bit-Monnot Artificial Intelligence – CM8 3 / 46

Monte-Carlo methods Monte-Carlo Tree Search

Monte-Carlo methods

Broad class of computational algorithms
that rely on repeated random sampling

♡

General schema:
• Define a domain of possible inputs.
• Generate inputs randomly from a

probability distribution over the domain.
• Perform a deterministic computation of the

outputs.
• Aggregate the results.

Casino of Monte-Carlo (Monaco)

Arthur Bit-Monnot Artificial Intelligence – CM8 4 / 46

Monte-Carlo methods (π estimation) Monte-Carlo Tree Search

Process:

• Define a square of side length 1
• randomly sample 𝑛 points in it
• let 𝑟 be the number of points within

distance 1 of a corner
• let 𝑏 be the others
• 𝑟

𝑛 estimates the area of the quarter-
circle (𝜋

4)

Arthur Bit-Monnot Artificial Intelligence – CM8 5 / 46

Monte-Carlo Tree Search Monte-Carlo Tree Search

Sampling in tree search

Rollout

From given state 𝑠 of the game, perform one complete game with randomized
actions until the game is decided (win, draw, loose).

♡

Complexity: 𝑂(𝑛 × 𝑏)
• 𝑛: average number of actions until the decision
• 𝑏 average branching factor

Arthur Bit-Monnot Artificial Intelligence – CM8 6 / 46

Rollouts as utility estimation Monte-Carlo Tree Search

Given:
• a set 𝑅 of rollouts from state 𝑠
• the utility 𝑢(𝑟) of the rollout

‣ (e.g. 1 for win, 0 for lost, 0.5 for draw)

𝑈(𝑠) = 1
|𝑅𝑠|

× ∑
𝑟∈𝑅𝑠

𝑢(𝑟)

⇨ 𝑈(𝑠) approximates the utility of 𝑠 if the two players act randomly¹

¹According to the randomized playout policy, often as simple as unirform random among all
possible actions.

Arthur Bit-Monnot Artificial Intelligence – CM8 7 / 46

Playout Policy Monte-Carlo Tree Search

Move in the rollout selected according to the
playout policy

• uniform random among legal move
‣ simplest, no game-specific knowledge
‣ utility for complety random play

Arthur Bit-Monnot Artificial Intelligence – CM8 8 / 46

Playout Policy Monte-Carlo Tree Search

Move in the rollout selected according to the
playout policy

• uniform random among legal move
‣ simplest, no game-specific knowledge
‣ utility for complety random play

• informed randomized
‣ bias towards seemingly good move
‣ require prior knowledge (heuristic, learning)

O 0 X

X 0.5 0.2

O 0.05 0.25

Example move distribution for a
playout policy of “X” that favors

blocking opponents and
aligning pieces

Arthur Bit-Monnot Artificial Intelligence – CM8 8 / 46

MCTS: Monte-Carlo for Tree-Search Monte-Carlo Tree Search

Monte-Carlo Tree Search is an algorithm that will iteratively build a game tree by
repeatidely:

1. select a node at the frontier
2. expand this node with a new untried action
3. simulate with a rollout the outcome
4. backpropagate this information up the tree

Arthur Bit-Monnot Artificial Intelligence – CM8 9 / 46

Example Monte-Carlo Tree Search

0
1

10 / 46

Example (selection) Monte-Carlo Tree Search

0
1

11 / 46

Example (expansion) Monte-Carlo Tree Search

a

0
1

0
0

12 / 46

Example (simulation) Monte-Carlo Tree Search

a

0
1

0
0

lost

13 / 46

Example (backpropagation) Monte-Carlo Tree Search

a

0
2

0
1

14 / 46

Example Monte-Carlo Tree Search

a

0
2

0
1

15 / 46

Example (selection) Monte-Carlo Tree Search

a

0
2

0
1

16 / 46

Example (expansion) Monte-Carlo Tree Search

a b
0
2

0
1

0
0

17 / 46

Example (simulation) Monte-Carlo Tree Search

a b
0
2

0
1

0
0

win

18 / 46

Example (backpropagation) Monte-Carlo Tree Search

a b
1
3

0
1

1
1

19 / 46

Example Monte-Carlo Tree Search

a b
1
3

0
1

1
1

20 / 46

Example (selection) Monte-Carlo Tree Search

a b
1
3

0
1

1
1

21 / 46

Example (expansion) Monte-Carlo Tree Search

a

a

b
1
3

0
1

1
1

0
0

22 / 46

Example (simulation) Monte-Carlo Tree Search

a

a

b
1
3

0
1

1
1

0
0

win

23 / 46

Example (backpropagation) Monte-Carlo Tree Search

a

a

b
2
4

0
1

2
2

1
1

24 / 46

Example Monte-Carlo Tree Search

a

a

b
2
4

0
1

2
2

1
1

25 / 46

Example (selection) Monte-Carlo Tree Search

a

a

b
2
4

0
1

2
2

1
1

26 / 46

Example (expansion) Monte-Carlo Tree Search

a

a b

b
2
4

0
1

2
2

1
1

0
0

27 / 46

Example (simulation) Monte-Carlo Tree Search

a

a b

b
2
4

0
1

2
2

1
1

0
0

win

28 / 46

Example (backpropagation) Monte-Carlo Tree Search

a

a b

b
3
5

0
1

3
3

1
1

1
1

29 / 46

Example Monte-Carlo Tree Search

a

a b

b
3
5

0
1

3
3

1
1

1
1

30 / 46

Example (selection) Monte-Carlo Tree Search

a

a b

b
3
5

0
1

3
3

1
1

1
1

31 / 46

Example (expansion) Monte-Carlo Tree Search

a

a

a

b

b
3
5

0
1

3
3

1
1

1
1

0
0

32 / 46

Example (simulation) Monte-Carlo Tree Search

a

a

a

b

b
3
5

0
1

3
3

1
1

1
1

0
0

win

33 / 46

Example (backpropagation) Monte-Carlo Tree Search

a

a

a

b

b
4
6

0
1

4
4

1
1

2
2

1
1

34 / 46

MCTS Key Components Monte-Carlo Tree Search

• 𝑈(𝑠): utility of the first rollout
• 𝑁(𝑠): numbers of times 𝑠 was selected
• 𝑁(𝑠, 𝑎): number of times the action 𝑎 was selected in 𝑠
• 𝑄(𝑠): estimated utility of state 𝑠
• 𝑄(𝑠, 𝑎): estimated utility of taking 𝑎 in 𝑠 (= 𝑄(result(𝑠, 𝑎)))

35 / 46

MCTS Key Components Monte-Carlo Tree Search

• 𝑈(𝑠): utility of the first rollout
• 𝑁(𝑠): numbers of times 𝑠 was selected
• 𝑁(𝑠, 𝑎): number of times the action 𝑎 was selected in 𝑠
• 𝑄(𝑠): estimated utility of state 𝑠
• 𝑄(𝑠, 𝑎): estimated utility of taking 𝑎 in 𝑠 (= 𝑄(result(𝑠, 𝑎)))

𝑄(𝑠) = 𝑈(𝑠)
𝑁(𝑠)

+ ∑
𝑎

𝑁(𝑠, 𝑎)
𝑁(𝑠)

× 𝑄(𝑠, 𝑎)

35 / 46

MCTS Key Components Monte-Carlo Tree Search

• 𝑈(𝑠): utility of the first rollout
• 𝑁(𝑠): numbers of times 𝑠 was selected
• 𝑁(𝑠, 𝑎): number of times the action 𝑎 was selected in 𝑠
• 𝑄(𝑠): estimated utility of state 𝑠
• 𝑄(𝑠, 𝑎): estimated utility of taking 𝑎 in 𝑠 (= 𝑄(result(𝑠, 𝑎)))

𝑄(𝑠) = 𝑈(𝑠)
𝑁(𝑠)

+ ∑
𝑎

𝑁(𝑠, 𝑎)
𝑁(𝑠)

× 𝑄(𝑠, 𝑎)

Special case: (win: 1, loss: 0)
⇨ 𝑄(𝑠) ratio of succesful rollouts at or below 𝑠

35 / 46

Samples as a policy Monte-Carlo Tree Search

When 𝑁(𝑠) ≫ 1

𝑄(𝑠) ≈ ∑
𝑎

𝑁(𝑠, 𝑎)
𝑁(𝑠)

× 𝑄(𝑠, 𝑎)⏟
utility of

resulting state

36 / 46

Samples as a policy Monte-Carlo Tree Search

When 𝑁(𝑠) ≫ 1

𝑄(𝑠) ≈ ∑
𝑎

𝑁(𝑠, 𝑎)
𝑁(𝑠)

× 𝑄(𝑠, 𝑎)⏟
utility of

resulting state

Expected utility of a player that in a state 𝑠 would select action 𝑎 with
probability 𝑁(𝑠,𝑎)

𝑁(𝑠)

36 / 46

Players policy Monte-Carlo Tree Search

𝜋(𝑠, 𝑎) = 𝑁(𝑠, 𝑎)
𝑁(𝑠)

𝑄(𝑠) ≈ ∑
𝑎

𝜋(𝑠, 𝑎) × 𝑄(𝑠, 𝑎)

Accurate when:

• 𝜋(𝑠, 𝑎) is near-optimal
‣ selects the best action with probability ≈ 1

• 𝑄(𝑠, 𝑎) is accurate
‣ result(𝑠, 𝑎) has seen many rollouts
‣ with a near-optimal policy 𝜋

37 / 46

Selection in MCTS Monte-Carlo Tree Search

Selecting a node 𝑠 has two effects on 𝑄:
• it improve its estimate

‣ additional rollout
‣ tree expansion

• it biases the policy towards it

a

a b

b
2
6

0
1

2
5

1
2

1
3

38 / 46

Upper confidence applied to trees (UCT) Monte-Carlo Tree Search

select(𝑠) = argmax𝑎 UCB1(𝑠, 𝑎)

UCB1(𝑠, 𝑎) = 𝑇 × 𝑄(𝑠, 𝑎)⏟⏟⏟⏟⏟
exploitation

+ 𝐶 × √2 × log(𝑁(𝑠))
𝑁(𝑠, 𝑎)⏟⏟⏟⏟⏟⏟⏟

exploration

Where
• 𝑇 = 1 if it is my turn and 𝑇 = −1 if it the opponents turn

‣ models maximization/minimization of 𝑄
• 𝐶 is a game-specific constant balancing exploration and exploitation

‣ theoretical arguments that it is optimal when the utility is in [0, 𝐶]

39 / 46

Upper confidence applied to trees (UCT) Monte-Carlo Tree Search

select(𝑠) = argmax𝑎 UCB1(𝑠, 𝑎)

UCB1(𝑠, 𝑎) = 𝑇 × 𝑄(𝑠, 𝑎)⏟⏟⏟⏟⏟
exploitation

+ 𝐶 × √2 × log(𝑁(𝑠))
𝑁(𝑠, 𝑎)⏟⏟⏟⏟⏟⏟⏟

exploration

The exploration term:
• is ∞ when the action has never been selected (𝑁(𝑠, 𝑎) = 0)
• tends towards 0 when the number of playout grows

40 / 46

MCTS Algorithm Monte-Carlo Tree Search

To determine the best action in a state 𝑠, Monte-Carlo Tree Search
1. does a number of playouts (a time allows)

• selection, expansion, simulation, backpropagation
2. selects the node that has been selected the most

• highest ranked by the policy

MCTS (s):
1 while IsTimeRemaining ()
2 Playout (s)
3 return argmax𝑎𝑁(𝑠, 𝑎)

41 / 46

Playout algorithm Monte-Carlo Tree Search

Playout (s):
1 if 𝑁(𝑠) = 0: // Node was just expanded
2 𝑈(𝑠) ← simulate(𝑠′) // rollout
3 𝑁(𝑠) ← 1
4 𝑄(𝑠) ← 𝑈(𝑠)
5 else
6 𝑎 ← argmax𝑎 UCB1(𝑠, 𝑎) // selection
7 𝑠′ ← result(𝑠, 𝑎)
8 Playout (s’)
9 // Update counts and utility estimates

10 𝑁(𝑠) ← 𝑁(𝑠) + 1
11 𝑁(𝑠, 𝑎) ← 𝑁(𝑠, 𝑎) + 1
12 𝑄(𝑠) ← 𝑈(𝑠)

𝑁(𝑠) + ∑𝑥
𝑁(𝑠,𝑥)
𝑁(𝑠) × 𝑄(𝑠, 𝑥)

42 / 46

MCTS Properties Monte-Carlo Tree Search

• Converges towards optimal policy (minimax like)

43 / 46

MCTS Properties Monte-Carlo Tree Search

• Converges towards optimal policy (minimax like)
• Initially focuses on exploration (breadth-first like)

43 / 46

MCTS Properties Monte-Carlo Tree Search

• Converges towards optimal policy (minimax like)
• Initially focuses on exploration (breadth-first like)
• Explore promising move more thoroughly

‣ asymetric (potentially more sample efficient)

43 / 46

MCTS Properties Monte-Carlo Tree Search

• Converges towards optimal policy (minimax like)
• Initially focuses on exploration (breadth-first like)
• Explore promising move more thoroughly

‣ asymetric (potentially more sample efficient)
• no game specific knowledge (with uniform random rollouts)

‣ rules of the games are sufficient to play

43 / 46

MCTS In the Wild Monte-Carlo Tree Search

State-of-the-art in many situation:

• Go (AlphaGo, AlphaZero)
• Video games (Atari, StarCraft)
• General Game Playing (game-independent)
• many optimisation problems (routing, scheduling, …)

44 / 46

MCTS In the Wild Monte-Carlo Tree Search

State-of-the-art in many situation:

• Go (AlphaGo, AlphaZero)
• Video games (Atari, StarCraft)
• General Game Playing (game-independent)
• many optimisation problems (routing, scheduling, …)

Beaten by minimax variants:

• when branching factor is low (checkers)
• when computational resources are limited (“slow” convergence)

44 / 46

Extensions in Go Monte-Carlo Tree Search

• RAVE: Rapid Action Value Estimation¹
‣ approximate the value of action independently of their context
‣ fast and approximate bootstraping

• AlphaGo² exploits ML to learn:
‣ a value function to replace the rollouts
‣ a prior action distribution to bias exploration towards likely nodes
‣ learned from examples (grand master games) + self-play (RL)

• AlphaZero: similar but learning entierly through self play
‣ applied beyond Go (chess, …)

¹Monte-Carlo Tree Search and Rapid Action Value Estimation in Computer Go
²Mastering the game of Go with deep neural networks and tree search

45 / 46

The Bitter Lesson (Rich Sutton) Monte-Carlo Tree Search

The biggest lesson that can be read from 70 years of AI research is that general
methods that leverage computation are ultimately the most effective, and by a

large margin.
…

One thing that should be learned from the bitter lesson is the great power of
general purpose methods, of methods that continue to scale with increased

computation even as the available computation becomes very great. The two
methods that seem to scale arbitrarily in this way are search and learning.

…

Rich Sutton – The Bitter Lesson¹

¹http://www.incompleteideas.net/IncIdeas/BitterLesson.html
46 / 46

http://www.incompleteideas.net/IncIdeas/BitterLesson.html

	Monte-Carlo Tree Search
	Minimax
	Minimax limitations
	Monte-Carlo methods
	Monte-Carlo methods (π estimation)
	Monte-Carlo Tree Search
	Sampling in tree search

	Rollouts as utility estimation
	Playout Policy
	MCTS: Monte-Carlo for Tree-Search
	Example
	Example (selection)
	Example (expansion)
	Example (simulation)
	Example (backpropagation)
	Example
	Example (selection)
	Example (expansion)
	Example (simulation)
	Example (backpropagation)
	Example
	Example (selection)
	Example (expansion)
	Example (simulation)
	Example (backpropagation)
	Example
	Example (selection)
	Example (expansion)
	Example (simulation)
	Example (backpropagation)
	Example
	Example (selection)
	Example (expansion)
	Example (simulation)
	Example (backpropagation)
	MCTS Key Components
	Samples as a policy
	Players policy
	Selection in MCTS
	Upper confidence applied to trees (UCT)
	Upper confidence applied to trees (UCT)
	MCTS Algorithm
	Playout algorithm
	MCTS Properties
	MCTS In the Wild
	Extensions in Go
	The Bitter Lesson (Rich Sutton)

